Beta-Barium Borate-manufacture,factory,supplier from China

(Total 24 Products for Beta-Barium Borate)
Beta-BBO crystal is an important nonlinear optical crystal with combination of unique optical properties, such as broad transmission and phase matching ranges, large nonlinear coefficient, high damage threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth harmonic generation of Nd:YAG lasers, and the best NLO material for the fifth harmonic generation at 213 nm.
Jetzt Kontakt aufnehmen
Barium Borate exists in three major crystalline forms: alpha, beta, and gamma. The low-temperature beta phase converts into the alpha phase upon heating to 925 °C. β-BBO differs from α-BBO by the positions of the barium ions within the crystal. Both phases are birefringent, however α-BBO has centric symmetry and thus does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Jetzt Kontakt aufnehmen
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Jetzt Kontakt aufnehmen
High temperature phase of α-BBO Crystal (BaB2O4) is one of the excellent birefringent crystals. It is characterized by large birefringent coefficient and wide transmission window ranged from 189nm to 3500nm. Due to its high chemical stability and medium hardness, α-BBO is fabricated easily into many kinds of optical components.The physical, chemical, thermal and optical properties of α-BBO are similar to those of β-BBO.
Jetzt Kontakt aufnehmen
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low piezoelectric ringing makes this Pockels cell attractive for the control of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Jetzt Kontakt aufnehmen
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Jetzt Kontakt aufnehmen
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Jetzt Kontakt aufnehmen
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Jetzt Kontakt aufnehmen
High temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm. The physical, chemical, thermal, and optical properties of alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal. However, there is no second order nonlinear effect in alpha-BBO crystal due to the centrosymmetry in its crystal structure and thus it has no use for second order nonlinear optical processes.
Jetzt Kontakt aufnehmen
The periodic polarized KTP (PPKTP) is a novel nonlinear optical material that can be customized to achieve all of the nonlinear applications required in the entire KTP crystal transmission band, without the phase matching limitations of conventional KTP. Moreover, the effective nonlinear coefficient of PPKTP is about 3 times higher than that of conventional KTP. In the nonlinear application of conventional KTP, the crystal must have a single domain structure, but PPKTP crystal has an artificially induced periodic domain structure.
Jetzt Kontakt aufnehmen
Nd:YVO4 (Neodymium-doped Yttrium Vanadate) is the most efficient laser crystal for diode-pumped solid-state lasers. Its good physical, optical and mechanical properties make Nd:YVO4 an excellent crystal for high power, stable and cost-effective diode-pumped solid-state lasers, especially for lasers with low or middle power density. Nd:YVO4  is a good choice for highly polarized output at 1342 nm, as the emission line is much stronger than those of its alternatives.
Jetzt Kontakt aufnehmen
Nd:YLF is an excellent crystal that is very suitable for working in mode-locked mode to obtain short pulse laser. Nd:YLF has very small thermal lens effect (much smaller than YAG crystal), wide fluorescent line, and can generate linear-polarized beam. The relatively small stimulated emission cross section of Nd:YLF makes it suitable for continuous work with low threshold. Nd:YLF crystal has obtained important applications in inertial confinement laser fusion research projects.
Jetzt Kontakt aufnehmen
LN Crystal is a multifunctional material that integrates properties of piezoelectric, ferroelectric, pyroelectric, nonlinear, electro-optical, photoelastic, etc. LiNbO3 has good thermal stability and chemical stability.As one of the most thoroughly characterized nonlinear optical materials, LiNbO3 is suitable for a variety of frequency conversion applications. For example, it is widely used as frequency doublers for wavelength >1 μm and optical parametric oscillators (OPOs) pumped at 1064 nm as well as quasi-phase-matched (QPM) devices.
Jetzt Kontakt aufnehmen
Tm:YAP crystal is one of the most important crystals for LD pumping 2μm laser. The anisotropic structure of Tm:YAP produces anisotropic emission cross section. Tm:YAP crystals with different orientations have different output wavelengths and operating forms for different functions. Compared with the physical and chemical properties of Tm:YAG, the 795nm pump absorption band of Tm:YAP matches the emission wavelength of commonly used high-power AlGaAs diodes better.
Jetzt Kontakt aufnehmen
Tm3+:YLF crystal has a high absorption peak around 792 nm which locates in the diode pumping range, and also has a cross-relaxation process that provides the possibility for each absorbed pump photon to produce to ions at higher laser energy level. Tm3+: YLF laser is very suitable as a pump source for Ho3+:YAG laser. This is due to the good overlap of the emission band of Tm3+:YLF and the absorption band of Ho3+:YAG, and the ability to produce a linearly polarized output.
Jetzt Kontakt aufnehmen
Lithium Niobate (LiNbO3) is widely used  in fiber communication devices as birefringent crystal and used as electro-optic modulator and Q-switch for Nd:YAG, Nd:YLF and Ti:Sapphire lasers. It has good mechanical and physical properties and is ideal for optical polarizing components due to its wide transparency range and low cost. LiNbO3's applications for fiber communication include isolators, circulators, beam displacers, and other polarizing optics. The transverse modulation is mostly employed for LiNbO3 crystal.
Jetzt Kontakt aufnehmen
Periodically poled lithium niobate (PPLN) crystal and MgO: PPLN are a new kind of nonlinear optical crystal, which can realize high-efficiency frequency conversion such as frequency doubling, sum frequency, and optical parametric oscillation in wave brand from visible to mid-infrared.  When doped with 5% MgO, the photodamage threshold and photorefractive threshold of PPLN are greatly increased (compared to that of pure PPLN), and their performance is more stable and suitable for room temperature use.
Jetzt Kontakt aufnehmen
One of the most important drawbacks of popular LiNbO3 crystal is its susceptibility to photorefractive damage (optically induced change of refractive index, usually under exposure with blue or green CW light). The usual way to eliminate this effect is to keep LN crystals at elevated temperatures (400K or more). Another way to prevent photorefractive damage is MgO-doping (usually at levels of around 5 mol% for congruent LN).
Jetzt Kontakt aufnehmen
A corner cube (or cube corner), also known as a retroreflector, is an optical component with the unique ability to return an incoming beam of light directly towards its point of origin regardless of the beam's angle of entry. This property makes this prism type ideal for a wide variety of applications, such as laser resonator cavities, land surveying, ground based range-finding, satellite communications and space vehicle docking.Wisoptic offer a wide variety of retroreflectors at competitive prices and lead times, and are able to accommodate the most demanding requirements.
Jetzt Kontakt aufnehmen
Waveplates (retardation plates or phase shifters) are made from optical materials  with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the extraordinary and ordinary rays through the birefringent materials vary inversely with their refractive indices. The difference in velocities gives rise to a phase difference when the two beams recombine.
Jetzt Kontakt aufnehmen
Thin Film Polarizers are made from composed materials which include a polarizing film, an inner protective film, a pressure-sensitive adhesive layer, and an outer protective film. Polarizer is used to change un-polarized beam into linear polarized beam.
Jetzt Kontakt aufnehmen
Right angle prisms are generally used to bend image paths or redirect light at 90°. This produces a left handed image and depending on the orientation of the prism, the image may be inverted or reverted.
Jetzt Kontakt aufnehmen
Corner cube prisms are optics which act as corner reflectors. The basic operation principle is that there are internal reflections on three mutually orthogonal prism surfaces, producing a direction of a reflected beam which is nominally parallel to the direction of the incident beam – with the accuracy limited only by the accuracy of the surface orientation of the prism. Precision prisms can offer excellent parallelism of incoming and reflecting beams. It is usually specified as an angular deviation, e.g.
Jetzt Kontakt aufnehmen
A prism, in optics, is a piece of glass or other transparent object surrounded by two planes that intersect but are not parallel to each other. The most important parameters of a prism are the angle and material.  Prisms are capable to redirect light at a designated angle or adjust the orientation of an image. Therefore prism is useful for in certain spectroscopes, instruments for analyzing light and for determining the identity and structure of materials that emit or absorb light. An optical prism’s design determines how light interacts with it.
Jetzt Kontakt aufnehmen
Relate News
Conclusion Considering comprehensive factors such as wide absorption bandwidth, large absorption cross section, long upper energy level lifetime (ms to tens of ms) (see Table 2), ion cross relaxation, increased quantum efficiency, and mature LD pump source, Tm3+ in the 2 μm band, Ho3+ and Er3+ in the 3 μm band must be one of the most important and basic laser sources in the mid-infrared band from 2 to 20 μm, and will compete with Nd3+ and Yb3+ in the 1 μm band.
3 The main application of lithium tantalate crystal3.4 Pyroelectric detectorTo detect targets, pyroelectric detectors generally exchange heat with the outside environment through three methods: thermal convection, thermal conduction and thermal radiation. The working principle is: electrons are adsorbed on the surface of the pyroelectric material, and the surface is neutral; the temperature of the material surface changes when heated, and the electric dipole moment of the material changes; in order to keep the surface of the material neutral, the surface releases charges.
2.3 Lithium tantalate single crystal filmAfter the 1980s, thin film preparation technology has developed rapidly. Currently, the commonly used preparation technologies of lithium tantalate single crystal (www.wisoptic.com) thin film mainly include chemical vapor deposition, physical vapor deposition, magnetron sputtering and sol-gel method.The chemical vapor deposition method synthesizes a thin film on a substrate through a chemical reaction and accurately controls the chemical composition of the product. It has the characteristics of low stress and good quality.
2. Theoretical analysis2.1 Temperature robustnessTemperature robustness refers to the stability of the frequency-doubled crystal with respect to temperature. Specifically, when the temperature fluctuates, the power of the frequency-doubled light will not be greatly affected. The influence of temperature on the frequency doubling process mainly comes from the influence on the phase mismatch.
3 The main application of lithium tantalate crystal3.2 OscillatorAn oscillator is an energy conversion device that converts DC power into AC power with a certain frequency. This circuit is called an oscillation circuit. The oscillator achieves free oscillation through the mutual conversion between magnetic field energy and electric field energy.Oscillators are divided into RC oscillators, LC oscillators and crystal oscillators. The crystal oscillator has a piezoelectric effect, and the crystal will deform when a voltage is applied to the two poles of the wafer.
2. Fabrication of Lithium Tantalate Crystal2.1 Fabrication of same composition lithium tantalate crystalThe same composition Lithium tantalate (CLT) crystals are often fabricated by mixing high-purity tantalum pentoxide with high-purity lithium carbonate at a stoichiometric ratio of 0.95:1 (molar ratio), and are prepared by the crucible pulling method. The quality of LiTaO3 crystal (www.wisoptic.com) is generally affected by factors such as raw material ratio, pulling speed, seed crystal quality, crucible shape and type.
3 The main application of lithium tantalate crystal3.3 E-O Q-SwitchThe basis of laser Q-switched technology is a special optical component - a fast intracavity optical switch generally called Q-switch. The Q value is an indicator for evaluating the quality of the optical resonant cavity. The higher the Q value, the lower the required pump threshold and the easier it is for the laser to oscillate. The purpose of laser Q-switching technology is to compress the pulse width and increase the peak power.
IntroductionLithium tantalate (LiTaO3, referred to as LT), as an excellent multifunctional crystal material, has good piezoelectric, electro-optical and pyroelectric properties, and is ideal for making surface acoustic wave (SAW) filters, resonators, tuners, Q switches and pyroelectric detectors. Devices made from LT crystal (www.wisoptic.com) are widely used in the automotive electronics, 5G communications and infrared detectors, and have broad market prospects.In 1965, Ballman used the pulling method to grow LT single crystal for the first time.
Study on the efficiency and temperature robustness of chirped PPLN crystal in 1064nm frequency doubling experiment - 06  4. Experimental Result and Analysis4.2 Temperature robustness comparison between CPPLN and LBOWhen the input 1064nm light is 22.53W, the curves of the frequency-doubled optical power generated by CPPLN (www.wisoptic.com) and LBO (www.wisoptic.com) with temperature are shown in Figure 5(a) and Figure 5(b). The half-maximum full width of the frequency-doubled optical power of CPPLN with respect to temperature is 8.40℃, ranging from 24.19℃ to 32.59℃.
3 The main application of lithium tantalate crystal3.1 SAW Wave filterYang Qing-rui and others designed a resonator SAW filter using LiTaO3/SiO2/Si substrate. Figures 3 and 4 are optical photos of the device and partial scanning electron microscopy pictures of the device respectively. The interdigitated electrodes of the device in the picture are clear and no adhesion is seen.
x

erfolgreich eingereicht

Wir werden uns schnellstmöglich mit Ihnen in Verbindung setzen

Schließen