BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Due to the low piezoelectric coupling coefficients of BBO, BBO Pockels cells function at repetition rates of hundreds of kilohertz.
Jetzt Kontakt aufnehmen
Beta-BBO crystal is an important nonlinear optical crystal
with combination of unique optical properties, such as broad transmission and
phase matching ranges, large nonlinear coefficient, high damage
threshold and excellent optical homogeneity. The β-BBO crystal is an efficient material for the second, third and fourth
harmonic generation of Nd:YAG lasers, and the best NLO material for the
fifth harmonic generation at 213 nm.
Jetzt Kontakt aufnehmen
High temperature phase of α-BBO Crystal (BaB2O4)
is one of the excellent birefringent crystals. It is characterized by
large birefringent coefficient and wide transmission window ranged from
189nm to 3500nm. Due to its high chemical stability and medium hardness,
α-BBO is fabricated easily into many kinds of optical components.The
physical, chemical, thermal and optical properties of α-BBO are similar
to those of β-BBO.
Jetzt Kontakt aufnehmen
BBO(Beta-Barium Borate, β-BaB2O4)based Pockels cells operate from approximately 0.2 - 1.65 µm and are not subject to tracking degradation. BBO exhibits low piezoelectric response, good thermal stability, and low absorption. Low
piezoelectric ringing makes this Pockels cell attractive for the control
of high-power and high-pulse repetition rate (hundreds of kilohertz, up to 1MHz) lasers.
Jetzt Kontakt aufnehmen
Barium Borate exists in three major crystalline forms: alpha, beta, and
gamma. The low-temperature beta phase converts into the alpha phase upon
heating to 925 °C. β-BBO differs from α-BBO by the
positions of the barium ions within the crystal. Both phases are
birefringent, however α-BBO has centric symmetry and thus
does not has the same nonlinear properties as β-BBO.α-BBO is a negative uniaxial crystal with a large birefringence over the broad transparent range from 189 nm to 3500 nm.
Jetzt Kontakt aufnehmen
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc.β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Jetzt Kontakt aufnehmen
Beta-Barium Borate (β-BBO) is an excellent nonlinear crystal with combination of a number of unique features: wide transparency region, broad phase-matching range, large nonlinear coefficient, high damage threshold, and excellent optical homogeneity. Therefore, β-BBO provides an attractive solution for various nonlinear optical applications such as OPA, OPCPA, OPO etc. β-BBO also has advantages of large thermal acceptance bandwidth, high damage threshold and small absorption, thus is very suitable for frequency conversion of high peak or average power laser radiation, e.g.
Jetzt Kontakt aufnehmen
LBO (LiB3O5) is an excellent non-linear crystal of Borate-family following BBO. LBO has advantages of good ultraviolet transmittance (210-2300 nm), high laser damage threshold and large effective frequency doubling coefficient (about 3 times of KDP crystal). Therefore LBO is commonly used to produce high power second and third harmonic laser light, especially for ultraviolet lasers.LBO has large band gap and transparency region, high non-linear coupling, good chemical and mechanical properties.
Jetzt Kontakt aufnehmen
High
temperature phase BBO (alpha-BBO, a-BBO) is a negative uniaxial crystal
with a large birefringence over the broad transparent range from 189 nm
to 3500 nm. The physical, chemical, thermal, and optical properties of
alpha-BBO crystal are similar to those of the low temperature phase beta-BBO crystal.
However, there is no second order nonlinear effect in alpha-BBO crystal
due to the centrosymmetry in its crystal structure and thus it has no
use for second order nonlinear optical processes.
Jetzt Kontakt aufnehmen
An aspherical lens features a non-spherical but rotationally symmetric
shape with a curvature radius that changes at various points between the
center and the edge. Although producing this type of lens is difficult,
when manufactured properly, it offers greater functionality than a
comparable spherical lens.Spherical Lenses vs. Aspherical LensesSpherical lenses have a spherical surface and the same radius of
curvature across the entire lens. In contrast, aspherical lenses have a
more complicated surface with a gradually changing curvature from center
to edge.
Jetzt Kontakt aufnehmen
The improved hydrothermal-grown KTP crystal overcomes the common
electrochromism damage of flux-grown KTP. The hydrothermal-grown KTP (HGTR-KTP, or GTR-KTP) has high damage
threshold, large effective electro-optic coefficients and lower
half-wave voltage. KTP EO Q-switches made by HGTR-KTP crystals utilize thermally compensated
double crystal designs. They are mainly used in pulse lasers with narrow pulse width and high repetition frequency.
Jetzt Kontakt aufnehmen
RTP (Rubidium Titanyl Phosphate - RbTiOPO4) is a very desirable crystal material for E-O modulators and Q-switches. It has advantages of higher damage threshold (about 1.8 times that of KTP), high resistivity, high repetition rate, no hygroscopic or piezoelectric effect. As biaxial crystals, RTP’s natural birefringence needs to be compensated by use of two crystal rods specially oriented so that beam passes along the X-direction or Y-direction.
Jetzt Kontakt aufnehmen
Phase retardation plates, or waveplates, are polarizing
optics used to manipulate the polarization state of the transmitting
light without attenuating, deviating, or displacing the light. The
working principle of the plate is to utilize
the birefringence of certain materials which separates the incident
light beam into two beams along two orthogonal optical axes within
the medium. The phase retardation between the two beams of the incident light contributes to changes in the
polarization state.
Jetzt Kontakt aufnehmen
A wave plate, also called a phase retarder, is an optical device that changes the polarization state of light by generating an optical path difference (or phase difference) between two mutually orthogonal polarization components. When the incident light passes through wave plates with different types of parameter, the exit light is different, which may be linearly polarized light, elliptically polarized light, circularly polarized light, etc.
Jetzt Kontakt aufnehmen
Waveplates (retardation plates or phase shifters) are made from
optical materials with precise thickness such as quartz, calcite or mica, which exhibit birefringence. The velocities of the
extraordinary and ordinary rays through the birefringent materials vary
inversely with their refractive indices. The difference in velocities
gives rise to a phase difference when the two beams recombine.
Jetzt Kontakt aufnehmen
Yb:YAG (Ytterbium-doped Yttrium Aluminum Garnet) is one of the most promising laser-active materials with a large absorption bandwidth and typical
emission at 1030 nm. Yb:YAG is more suitable for high power diode-pumped lasers than the traditional Nd-doped systems. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output.
Jetzt Kontakt aufnehmen
Yb:YAG's advantage is a wide pump band and an excellent emission
cross section. It is ideal for diode pumping. The broad absorption band
enables Yb:YAG to maintain uninterrupted pump efficiency across the
typical thermal shift of diode output. High efficiency means a
relatively small dimension Yb:YAG laser crystal will produce high power
output. Based on the YAG host crystal, Yb:YAG can be quickly integrated
into the laser design process.
Jetzt Kontakt aufnehmen
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Jetzt Kontakt aufnehmen
Ytterbium Doped Yttrium Aluminum Garnet (Yb:YAG) is more suitable for diode-pumping than the traditional Nd-doped laser crystal. Compared with the commonly used Nd:YAG, Yb:YAG has the following advantages: three to four times lower thermal loading per unit pump power and much larger absorption bandwidth to reduce thermal management requirements for diode lasers, longer upper-laser level lifetime.
Jetzt Kontakt aufnehmen
Solid Laser DyesThere is some work on dye lasers based on solid media, e.g.
Jetzt Kontakt aufnehmen
WISOPTIC offers both plate and cube PBS for a variety of wavelength ranges and power handling requirements.
Jetzt Kontakt aufnehmen
Polarizing Beamsplitters (PBS) are
designed to split light by polarization state rather than
by wavelength or intensity. PBS are often used in
semiconductor or photonics instrumentation to transmit p-polarized light
while reflecting s-polarized light. Optical isolators use PBS to eliminate feedback-induced damage. PBS are typically designed for 0° or 45° angle of incidence
with a 90° separation of the beams, depending on the configuration.WISOPTIC offers a wide variety of PBS in a
range of configurations including plate, cube, or lateral displacement.
Jetzt Kontakt aufnehmen
Polarization optics is important for both intra and extra cavity use. By using high contrast thin film polarizers in their design, laser engineers can save weight and volume within the laser system without influencing the output. Compared with polarizing prisms, polarizers have larger incident angle and can be made with larger apertures. Compared with polarizers made from birefringent crystals, the advantage of thin film polarizers made from UVFS or N-BK7 is that they can be fabricated in very large sizes, therefore are
particularly well suited for high laser powers and UV wavelengths.
Jetzt Kontakt aufnehmen
Nd:YVO4 is the most efficient laser crystal for diode-pumped solid-state lasers. The good physical, optical and mechanical properties make Nd:YVO4 an excellent material for high power, stable and cost-effective diode-pumped solid-state lasers.
Jetzt Kontakt aufnehmen